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linear potential system with an arbitrary damping matrix to be uncoupled into independent
subsystems of at most two degrees-of-freedom using a real orthogonal transformation. The
incorporation of additional information about the matrices, which many structural and
mechanical systems commonly possess, shows a reduction in the number of these conditions
to three. Several new results are obtained and are illustrated through examples. A useful
general form for the damping matrix is developed that guarantees the uncoupling of such
systems when they satisfy just two conditions. The results provided herein lead to new phys-
ical insights into the dynamical behavior of potential systems with general damping matri-
ces and robust computational procedures. It is shown that the dynamics of a damped
potential system in which the damping matrix may be arbitrary is identical to that of a
damped gyroscopic potential system with a symmetric damping matrix. This brings, for
the first time, these two systems, which are seen today as belonging to different categories
of dynamical systems, under a unified framework. [DOI: 10.1115/1.4065568]
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1 Introduction
One of the major contributions of the Bernoullis (Johann and

Daniel, eighteenth century) and Euler (1707–1783) to our under-
standing of the behavior of multi-degrees-of-freedom (MDOF)
structural and mechanical potential systems is the determination
of their natural frequencies of vibration, the existence of normal
modes of vibration, and the idea of their superposition [1]. The
extension to using normal mode analysis for linear damped
MDOF potential systems by Caughey and O’Kelly was a major
improvement in our understanding of systems that commonly
arise in many engineering applications in aerospace, civil, and
mechanical engineering, as well as in nature. At the heart of this
improvement is an important theorem in linear algebra, namely,
that two real symmetric matrices can be simultaneously diagonal-
ized by a real orthogonal transformation if and only if they
commute. Applying this primal theorem to a symmetric stiffness
(potential) matrix and a symmetric damping matrix, often used to
model a mechanical/structural system, enabled them to describe

the oscillations of a damped MDOF potential system in terms of
its classical normal modes [2]. The use of an orthogonal transforma-
tion to uncouple the dynamics of such a system is as simple and
remarkable as it is useful since it provides: (1) a much-improved
physical understanding of its vibratory behavior, and (2) robust
computational methods to quantitatively determine it.
Today, symmetric damping matrices that commute with a sym-

metric stiffness matrix have come to be used commonly in the mod-
eling of damped structural and mechanical MDOF systems. This is
largely because such a representation of an MDOF linear dynamical
system affords great simplicity in the analysis of its damped vibra-
tory behavior, since it leads to the uncoupling of the system into
smaller independent subsystems, each having just a single-
degree-of-freedom. But, what if the damping matrix is not sym-
metric and/or does not commute with the stiffness matrix?
To the best of the authors’ knowledge, little progress has been

made in the use of real orthogonal transformations to uncouple
potential systems that have more general (arbitrary) damping matri-
ces and that do not satisfy the restrictions of symmetry and commu-
tation. And yet, experimental results often yield damping matrices
that may not be symmetric (and/or may not satisfy the needed com-
mutation property) since the various damping sources (and their lin-
earized approximations made during modeling) that can arise in
complex structural and mechanical systems, such as spacecraft
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and building structures, can make the damping matrix lose the prop-
erties needed for classical normal modes to exist. Also, linear
MDOF structural and mechanical systems that are controlled by
using velocity feedback can have non-symmetric damping matrices.
Despite the generally perceived need, from a practical science/engi-
neering viewpoint, for an analogous (more general) theory that
addresses linear MDOF potential systems that have more general
damping matrices—a need that was well-recognized by Caughey
[3]—the reason for its lack over the last 60 years or so can be
traced back to the lack of primal results in linear algebra to base
such a theory upon. In what follows we shall see that just as the
advance provided by Caughey and O’Kelly was based on a
primal theorem in linear algebra, such a result needs to be estab-
lished in the context of general damping matrices; accordingly,
our work, therefore, begins with two central results that we prove
in linear algebra.
An approach for the complete diagonalization of linear MDOF

systems with non-symmetric damping matrices using complex
equivalence transformations (or biorthogonality) was investigated
in Ref. [4]. As we shall illustrate, besides the use of complex
vector spaces the transformation of damped MDOF potential
systems to diagonal form through complex equivalence transforma-
tions is quite restrictive. We show (see Remarks 5 and 6) that while
commonly occurring engineered systems as well as those found in
nature can be decoupled to a quasi-diagonal form (a term explained
later, after Theorem 2 below) under suitable conditions, they often
cannot be diagonalized using complex equivalence transformations.
In this paper, we study linear MDOF systems whose mass matri-

ces are positive definite, whose stiffness matrices are symmetric,
and whose damping matrices are arbitrary. We explore the condi-
tions needed for a damping matrix to permit a linear MDOF
system to be uncoupled through the use of a real orthogonal trans-
formation and a simple real coordinate change in exactly the same
manner done by Caughey and O’Kelly in Ref. [2]. We obtain the
necessary and sufficient (n&s) conditions under which such
MDOF systems can be uncoupled into smaller-dimensioned, inde-
pendent subsystems, each with either a single-degree-of-freedom
or two degrees-of-freedom (2DOF). In this sense, this paper repre-
sents an extension of the line of thinking first pioneered in Ref. [2];
it is an expansion of the idea of using real orthogonal transforma-
tions and real vector spaces to improve our physical understanding
of general damped linear MDOF potential systems as well as to
provide robust computational methods for their analysis. Such
systems in which the damping matrix may not be symmetric and/
or may not have the restrictive commutation properties required
to yield classical normal modes often occur in real-life situations,
and therefore the results obtained herein are expected to be of
some practical value.
As an example of a system with a non-symmetric damping

matrix, consider the linear two degrees-of-freedom system shown
in Fig. 1 in which the mass m moves in a vertical x-y plane with

gravity acting downward. Motion in the y-direction is restrained
by a linear spring with stiffness k1, a linear dashpot with linear
damping d, and a u-shaped snubber of mass m1 that is in contact
with a (straight) horizontal moving belt that has constant velocity
v, as shown. Motion in the x-direction is restrained by linear
springs each with spring constant k, dashpots each with linear
damping c, and the frictional force between the snubber and
the moving belt. The coefficient of kinetic friction between the
snubber and the belt is μ so that the horizontal force on the
snubber is −μ(dẏ(t) + m1g)sgn(v + ẋ(t)) where g is the acceleration
due to gravity. We assume that the belt velocity v is large enough so
that v + ẋ(t) > 0. The equation of motion for small oscillations about
the equilibrium position is then given by

m + m1 0
0 m

[ ]
︸��������︷︷��������︸

M̃

ẍ
ÿ

[ ]
+

2c μd
0 d

[ ]
︸�����︷︷�����︸

D̃

ẋ
ẏ

[ ]
+

2k 0
0 k1

[ ]
︸�����︷︷�����︸

K̃

x
y

[ ]
=

0
0

[ ]

We note that the matrices K̃ and D̃ do not commute when
k1 ≠ 2k. The structure of the matrices in this simple example is
meant to provide an easy conceptual notion for what we now take
up in a more general setting.
Consider the general linear MDOF system described by the equa-

tion

M̃q̈ + D̃q̇ + K̃q = f̃ (t) (1)

where q(t) and f̃ (t) are n-vectors (n by 1 column vectors),

M̃
T
= M̃ > 0, K̃ = K̃

T
, and D̃ is an arbitrary damping matrix. The

real matrices M̃, D̃, and K̃ are each n by n matrices, and the dots
indicate differentiation with respect to time, t. Using the real trans-

formation q(t) = M̃
−1/2

x(t), Eq. (1) reduces to the relation

ẍ + Dẋ + Kx = f (t) (2)

where

D = M̃
−1/2

D̃M̃
−1/2

(3)

K = M̃
−1/2

K̃M̃
−1/2

(4)

and

f (t) = M̃
−1/2

f̃ (t) (5)

We shall refer to the matrices D and K as the damping and stiff-
ness matrices, respectively, and f (t) as the force. In what follows the
matrix K is an n by n symmetric matrix while the elements of the n
by n matrix D ≠ 0 (unless otherwise specified) are arbitrary.

LEMMA 1. The real matrix D in Eq. (2) can be (uniquely) split into
the sum of two matrices one of which is symmetric, the other skew-
symmetric.

Proof. (see, e.g., Horn and Johnson [5]) The matrix D can be
uniquely split as

D =
D + DT

2
+
D − DT

2
: = S + G (6)

where we have denoted the symmetric part of D by S and the skew-
symmetric part of D by G. ▪

Using Eq. (6), Eq. (2) can be written as

ẍ + (S + G)︸��︷︷��︸
D

ẋ + Kx = f (t) (7)

Equation (7) is equivalent to Eq. (1) and we will be primarily
using it in what follows. Furthermore, the n by n matrices S and
K are always taken to be symmetric unless otherwise stated, and

Fig. 1 Two degrees-of-freedom system with non-symmetric
damping matrix
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the n by n skew-symmetric matrix G ≠ 0 is assumed to have
Rank(G) = 2m ≤ n throughout the paper. The matrices S and G
always refer to the symmetric and skew-symmetric parts of the n
by n arbitrary damping matrix D shown in Eq. (6).
It should be noted that Eq. (7) can be interpreted in ways that are

very different from one another from a physical point of view. As
stated before, it corresponds to the modeling of an MDOF potential
system whose damping matrix D ≠ 0 is arbitrary—the matrix
D = S + G need not be symmetric and need not commute with K,
as required in Ref. [2]. But it can model just as well an MDOF
potential system subjected to a gyroscopic force described by the
matrix G and a damping force represented by the symmetric
matrix S. Examples of such systems are a damped whirring rod,
and the damped motion of low-orbit satellites in a rotating frame
of reference. More precisely, given a linear damped MDOF poten-
tial system, A1, with an arbitrary non-zero damping matrix D, there
is a corresponding linear damped MDOF gyroscopic potential
system, A2, with symmetric damping matrix S and gyroscopic
matrix G such that both these systems have the same response to
any given set of initial conditions and/or any given set of external
forces. In other words, these two dynamical systems are described
by the same governing equation of motion given in Eq. (7).
When D tends to S, then G tends to 0, and the damped gyroscopic
system becomes degenerate, since the gyroscopic force then tends
to zero.
This paper therefore presents a unified view of these two physi-

cally dissimilar systems—damped potential systems and damped
gyroscopic systems—which have been usually labeled in the
current mechanics literature to date as belonging to different catego-
ries of dynamical systems due to the widely different nature of the
physical forces that act in each of them (see, e.g., Ref. [6]). Since
they share the same equation of motion the latter system can be
thought of as the dual of the former, and vice versa. Our exploration
into the dynamical uncoupling of these systems into independent,
smaller-dimensional subsystems (along with the necessary and suf-
ficient conditions required for such an uncoupling to occur) is there-
fore applicable to each member of this pair of dual systems, though
throughout this paper we will use the notion of a damped potential
system as a vehicle to introduce our results. It is hoped that the
reader will keep in mind the closely allied dual notion of a
damped gyroscopic potential system (with a symmetrical damping
matrix S), which exhibits an identical dynamical behavior to that
of the damped potential system that is continually referred to in
the paper.
Our overall goal is to find a real orthogonal matrix Q (and the

conditions under which it might exist) so that a real change of coor-
dinates x = Qp transforms Eq. (7) into a canonical (simplest) form
that is maximally uncoupled. We shall call p the principal coordi-
nate. Note that p is obtained from x by a linear transformation
through the matrix Q, which physically represents simply a rotation
or a reflection.
Let us assume, for a moment, that such a real orthogonal matrixQ

exists. Upon multiplication of Eq. (7) from the left by QT , the use of
this coordinate change yields the real system of equations given by
(G ≠ 0)

p̈ + QTSQ ṗ + QTGQ ṗ + QTKQp = QTf (t) (8)

The simplest (canonical) form that this equation could take would
occur when the matrices QTSQ, QTGQ, and QTKQ are diagonal. If
this were possible, Eq. (8) would decompose into an uncoupled
system of n real independent (second-order differential) equations.
However, no real linear transformation, leaving aside an orthogonal
one, can accomplish this since the eigenvalues of the skew-
symmetric matrix G are purely imaginary; they come in complex
conjugate pairs. Thus, uncoupling this system of equations to
obtain n uncoupled equations is impossible, and such a system
cannot have classical normal modes. In other words, the system
cannot, in general, be uncoupled into n independent subsystems,
each of which is a single-degree-of-freedom subsystem.

In what follows, Eq. (8) will be important for us, because we will
show that an orthogonal matrix Q can be found such that the dyna-
mical system given in Eq. (8) can be uncoupled into independent
subsystems, each of which has no more than two
degrees-of-freedom when the matrices S, G, and K satisfy certain
necessary and sufficient conditions. These conditions, under
which this uncoupling is guaranteed, are explicitly obtained. But
before we do this, we present and prove two central theorems,
which unify the behavior of the two physically disparate categories
of dynamical systems mentioned earlier, and upon which our results
will rest.
The structure of this paper is as follows. In Sec. 2, we present two

theorems in linear algebra, that obtain the necessary and sufficient
conditions for a linear damped MDOF potential system (with a
general damping matrix) to be uncoupled; a total of seven condi-
tions are obtained. Section 3 develops analytical conditions for
the uncoupling of such systems based on our results in Sec. 2.
The number of necessary and sufficient conditions is shown to
reduce to just three for systems that are commonly encountered in
aerospace, civil, and mechanical engineering as well as in nature.
Section 4 deals with positing a useful general form for the
damping matrix that further reduces the number of conditions for
uncoupling of such MDOF systems to two. Several numerical
examples are provided in Secs. 3 and 4 to illustrate the analytical
results. Section 5 presents the main conclusions of this study.

2 Central Theorems
In this section, we obtain two results that provide the necessary

and sufficient conditions for the simultaneous quasi-diagonalization
of the matrices QTSQ, QTGQ, QTKQ in Eq. (8). This leads to a
maximal uncoupling of the MDOF system into independent subsys-
tems, each with either a single-degree-of-freedom or with two
degrees-of-freedom.

THEOREM 1. Let K = KT, S = ST , and G = −GT be n × n real matri-
ces, and let Rank(G) = 2m ≤ n. The necessary and sufficient condi-
tions for a real orthogonal matrix Q to exist such that

QTKQ = Λ = diag(λ1, . . . , λn) (9)

and

QTSQ = Σ = diag(σ1, . . . , σn) (10)

and

QTGQ = Γ = diag β1
0 1
−1 0

[ ]
, . . . , βm

0 1
−1 0

[ ]
, 0, . . . , 0

( )
(11)

are that the symmetric matrices

K, S, G2, GKG, GSG (12)

commute pairwise. The eigenvalues of K and S are
λi(i = 1, 2, . . . , n) and σi(i = 1, 2, . . . , n), respectively.

Proof. That the last three matrices in Eq. (12) are symmetric, are
simple to check.

(1) Necessity. Assume first that a real orthogonal matrix Q exists
such that an orthogonal reduction to the forms given in Eqs.
(9)–(11) occurs. We need to show that this implies that the symmetric
matrices given in Eq. (12) commute pairwise. But, this follows quite
directly, because the matrices in Eq. (12) are each orthogonally
similar to diagonal matrices, and therefore must commute pairwise.
For example, assuming that Q exists such that Eqs. (9)–(11) hold,
we find that

Journal of Applied Mechanics SEPTEMBER 2024, Vol. 91 / 091004-3



QT (GKG)Q= (QTGQ)(QTKQ)(QTGQ)=ΓΛΓ

=−diag(β21λ2, β
2
1λ1, . . . , β

2
mλ2m, β

2
mλ2m−1, 0, . . . , 0)

so that GKG = Q(ΓΛΓ)QT , and the matrix (ΓΛΓ) is diagonal.
Similarly,

QT (GSG)Q=ΓΣΓ=−diag(β21σ2, β
2
1σ1, . . . , β

2
mσ2m, β

2
mσ2m−1, 0, . . . , 0)

so that GSG = Q(ΓΣΓ)QT , and the matrix (ΓΣΓ) is again diagonal.
Thus, the commutator

[GKG, GSG]: = (GKG)(GSG) − (GSG)(GKG)

= Q{(ΓΛΓ)(ΓΣΓ) − (ΓΣΓ)(ΓΛΓ)} QT = 0

since the diagonal matrices (ΓΛΓ) and (ΓΣΓ) inside the curly brack-
ets commute.
(2) Sufficiency. We next assume that the matrices

K, S, G2, GKG, GSG commute pairwise and show that an orthogo-
nal matrix Q exists such that Eqs. (9)–(11) are true.
Let Λ(G) = ( ± iβ1, . . . , ± iβm, 0, . . . , 0), βj ≠ 0, j = 1, 2, . . . , m,

be the spectrum (denoted by Λ[ · ]) of the skew-symmetric matrix
G. Then Λ(G2) = (−β21, − β21, . . . , − β2m, − β2m, 0, . . . , 0). Since
the symmetric matrices K, S, G2, GKG, and GSG commute pair-
wise, according to a well-known result (see, e.g., Ref. [5]), they
have n common linearly independent eigenvectors.
With no loss of generality, let q1 be a (real) unit eigenvector such

that

G2q1 = −β21q1, β1 ≠ 0

Kq1 = λ1q1, Sq1 = σ1q1

GKGq1 = μ1q1

and

GSGq1 = η1q1

where λ1, σ1, μ1, and η1 are real numbers, which could be zero. Pre-
multiplying each of the last two equations by G gives G2KGq1 =
μ1Gq1 and G2SGq1 = η1Gq1. Since G2K = KG2 (because G2 and
K commute) and G2S = SG2 (because G2 and S commute), we
then get KGG2q1= μ1Gq1 and SGG2q1 = η1Gq1. Furthermore,
because G2q1 = −β21q1, these two relations become

K(Gq1) = −μ1β−21 (Gq1)

and

S(Gq1) = −η1β−21 (Gq1)

From this, it follows that −Gq1 is an eigenvector of both K and S.

Also, since ‖Gq1‖=
�����������
qT1G

TGq1
√

=
����������
−qT1G2q1

√
=

��������
β21q

T
1q1

√
=β1≠0,

we see that the vector q2: = −β−11 Gq1 is a unit eigenvector of the
matrices K and S, corresponding to the eigenvalue λ2: = −μ1β−21
and σ2: = −η1β−21 , respectively. We therefore obtain Kqj = λjqj,
j = 1, 2, and Sqj = σjqj, j = 1, 2. Furthermore, because G is skew-
symmetric, qT1 q2 = −β−11 qT1Gq1 = 0, i.e., the unit vectors q1 and
q2 are orthogonal.
Now using q1 and q2 as the first and second columns, we form an

orthogonal matrix Q1 = q1 q2 q3 . . . qn
[ ]

, whose remaining
columns can be chosen arbitrarily provided QT

1Q1 = In. We next
determine the structure of the symmetric matrices QT

1KQ1: =
[qTj Kqk] and QT

1SQ1: = [qTj Sqk], and the structure of the skew-
symmetric matrix QT

1GQ1: = [qTj Gqk].
We see that for k = 1, 2, . . . , n, noting the orthogonality of the

columns of Q1, the elements of the first and second rows

(columns) of QT
1KQ1 are given by

qT1Kqk = qTk Kq1 = λ1q
T
k q1 = λ1δ1k and qT2Kqk = qTk Kq2

= λ2q
T
k q2 = λ2δ2k (13)

where δ jk denotes the Kronecker delta. Similarly, for k =
1, 2, . . . , n, the first two rows (columns) of QT

1SQ1 are given by

qT1Sqk = qTk Sq1 = σ1q
T
k q1 = σ1δ1k and qT2Sqk = qTk Sq2

= σ2q
T
k q2 = σ2δ2k (14)

For k = 1, 2, . . . , n, noting that Gq1 = −β1q2 and Gq2 =
−β−11 G2q1 = β1q1, the elements of the first and second rows
(columns) of QT

1GQ1 are given, respectively, by the relations

qT1Gqk = −qTk Gq1 = β1q
T
k q2 = β1δ2k and qT2Gqk = −qTk Gq2

= −β1q
T
k q1 = −β1δ1k (15)

From Eqs. (13)–(15), the structure of each of the three matrices
QT

1KQ1, QT
1SQ1, and QT

1GQ1 is hence found to be as follows:

and

Since the (n− 2)-dimensional matrices Kn−2, Sn−2, and Gn−2
satisfy the same conditions as K, S, and G, this procedure continues
in the same manner and after m steps we conclude that there exists
an orthogonal matrix Q̂ such that

Q̂TGQ̂ = diag β1
0 1
−1 0

[ ]
, . . . , βm

0 1
−1 0

[ ]
, 0, . . . , 0

( )

Q̂TKQ̂ = diag(λ1, . . . , λ2m, Kn−2m)

and

Q̂TSQ̂ = diag(σ1, . . . , σ2m, Sn−2m)

where Kn−2m and Sn−2m are (n − 2m)-dimensional symmetric matri-
ces that commute, i.e., Kn−2mSn−2m = Sn−2mKn−2m. Since they
commute, there exists an orthogonal matrix �Qn−2m of order
(n − 2m) which reduces the matrices Kn−2m and Dn−2m simulta-
neously to diagonal forms. Consequently, the orthogonal matrix

Q = Q̂
I2m 0
0 �Qn−2m

[ ]
simultaneously reduces K, S, and G to the forms given in Eqs.
(9)–(11). ▪

THEOREM 2. Let K = KT, S = ST , and G = −GT be n × n real matri-
ces, and let Rank(G) = 2m ≤ n. The necessary and sufficient condi-
tions for a real orthogonal matrix Q to exist such that

QTKQ = Λ = diag(λ1, . . . , λn) (16)

and

QTSQ = Σ = diag(σ1, . . . , σn) (17)
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and

QTGQ = Γ

= diag β1
0 1

−1 0

[ ]
, . . . , βm

0 1

−1 0

[ ]
, 0, . . . , 0

( )
(18)

are that the following seven commutation conditions be met:

[K, S] = 0 (19)

[K, G2] = 0, [K, GKG] = 0 (20)

[S, G2] = 0, [S, GSG] = 0 (21)

and

[K, GSG] = 0, [S, GKG] = 0 (22)

where the commutator of any two square matrices A and B is
defined as [A, B]: = AB − BA.

Proof. According to Theorem 1, the necessary and sufficient con-
ditions for the existence of a real orthogonal matrix Q to simulta-
neously reduce S, G, and K to quasi-diagonal form is that the five
matrices K, S, G2, GKG, GSG in Eq. (12) commute pairwise.
There are therefore a total of C5

2 = 10 necessary and sufficient con-
ditions in all. Each of these pairwise commutation conditions can be
expressed in the commutator notation. However, the ten pairwise
commutation relations that they generate are not all independent
of one another. Three of them follow from the remaining seven
listed in Eqs. (19)–(22), as we now show.

(1) The condition that the matrices G2 and GKG commute,
which can be written as [G2, GKG] = 0, follows from the
condition that G2 also commutes with K ([K, G2] = 0).
Using the latter condition, we get G2(GKG) = GG2KG=
GKG2G = (GKG)G2.

(2) Replacing K by S in (1) above, we get [G2, GSG] = 0, upon
using the condition that G2 and S commute ([S, G2] = 0).

(3) Finally, the condition [GKG, GSG] = 0, follows upon using
the two conditions [G2, K] = 0, [G2, S] = 0 and [K, S] = 0,
since (GKG) (GSG)=GKG2SG=GG2KSG=GG2SKG=
GSG2KG=(GSG) (GKG).

This leaves us with the seven pairwise commutation conditions,
which are listed in Eqs. (19)–(22). ▪

It is this Theorem that we shall invoke in what follows. When the
forms in Eqs. (16)–(18) are obtained we shall refer to this as the
simultaneous quasi-diagonalization of the matrices S, G, and K
by the (orthogonal) matrix Q. We next give two lemmas that will
be used later.

LEMMA 2. Let A1 and A2 be two n by n matrices. If there exists an
orthogonal matrix Q such that A1 = QΛ1QT and A2 = QΛ2QT

where Λ1 and Λ2 are diagonal matrices, then [A1, A2] = 0.

Proof. The product A1A2 = QΛ1QTQΛ2QT = QΛ1Λ2QT :=
QΛ12QT , and similarly, A2A1 = QΛ2Λ1QT : = QΛ21QT , where the
diagonal matrix Λ12 = Λ21 since diagonal matrices commute with
each other. Hence, the commutator [A1, A2] = A1A2 − A2A1=
QΛ12QT − QΛ21QT = Q[Λ12 − Λ21]QT = 0. ▪

LEMMA 3. Let S and K be any two 2 by 2 symmetric matrices that
commute with one another, i.e., [S, K] = 0. Then the matrices S
and K satisfy the seven conditions given by Eqs. (19)–(22) for
any arbitrary 2 by 2 skew-symmetric matrix G.

Proof. Since S and K are symmetric and they commute, there exists
a 2 by 2 orthogonal matrix Q such that S = QΣQT and K = QΛQT

where Σ = diag(σ1, σ2) and Λ = diag(λ1, λ2) [5]. Furthermore,
every(any) 2 by 2 skew-symmetric matrix G can be written (with
no loss of generality) as

G = βQ
0 1
−1 0

[ ]
QT : = βQJ2Q

T

where J2 denotes the skew-symmetric matrix on the right-hand side
of the first equality, and β is a suitable real number.
Hence,

S = QΣQT , K = QΛQT

G2 = β2QJ2J2QT = Q( − β2I2)QT , where I2 is the 2 by 2 identity
matrix,

GSG = β2QJ2ΣJ2QT = Q
−β2σ2 0
0 −β2σ1

[ ]
QT

and

GKG = β2QJ2ΛJ2QT = Q −β2λ2 0
0 −β2λ1

[ ]
QT

Using Lemma 2 with n = 2, each of the commutation require-
ments in Eqs. (19)–(22) are satisfied. Hence, the result follows. ▪

Remark 1. Lemma 3 shows, in particular, that if S and K are any 2
by 2 symmetric matrices that commute ([K, S] = 0), and if G is
any arbitrary 2 by 2 skew-symmetric matrix, then [K, GKG]=
[S, GSG] = [K, GSG] = [S, GKG] = 0. We will use this observation
later on. ▪

Theorem 2 allows us to trivially obtain a previous result, which
we state here as a corollary since we will be using it later on.

COROLLARY 1. Let K = KT and G = −GT ≠ 0 be n by n real matri-
ces, and let Rank(G) = 2m ≤ n. The necessary and sufficient condi-
tions that there exists a real orthogonal matrix Q such that

QTKQ = Λ = diag(λ1, . . . , λn) (23)

QTGQ = Γ = diag β1
0 1

−1 0

[ ]
, . . . , βm

0 1

−1 0

[ ]
, 0, . . . , 0

( )
: = diag(β1J2, . . . , βmJ2, 0, . . . 0) (24)

QTG2Q = Γ2 = −diag(β21, β
2
1, . . . , β

2
m, β

2
m, 0, . . . , 0) (25)

and

QT (GKG)Q = (ΓΛΓ)

= −diag(β21λ2, β
2
1λ1, . . . , β

2
mλ2m, β

2
mλ2m−1, 0, . . . , 0)

(26)

where all the λj ′s and βj
′s are real numbers, are

[K, G2] = 0, or KG2 = G2K (27)

and

[K, GKG] = 0, or (KG)2 = (GK)2 (28)

Proof. Application of Theorem 2with S = 0 gives the result. (also see
Refs. [7,8] for earlier alternative proofs.) As before, J2 denotes the 2 by
2 skew-symmetric matrix shown on the right-hand side of Eq. (24).
Equations (25) and (26) follow from Eqs. (23) and (24). ▪

3 Uncoupling of Damped Potential MDOF Systems
We now consider uncoupling of the MDOF system described by

Eq. (7). Recall that the results are equally applicable to a damped
gyroscopic MDOF system (with a symmetric damping matrix)
that “shadows” the damped potential system and is its dual.
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Result 1. Consider the system described by Eq. (7) in which
Rank(G) = 2m ≤ n. Then the conditions

[K, S] = 0 (29)

[K, G2] = 0, [K, GKG] = 0 (30)

[S, G2] = 0, [S, GSG] = 0 (31)

and

[K, GSG] = 0, [S, GKG] = 0 (32)

are necessary and sufficient conditions for Eq. (7) to be decomposed
by an orthogonal congruence transformation x = Qp into uncou-
pled, independent subsystems, m of which are quasi-diagonalized
two degrees-of-freedom and n − 2m of which are single-
degree-of-freedom subsystems. The uncoupled equations in the
principal coordinates p have the form

p̈ + Σ ṗ + Γ ṗ + Λp = QTf (t) (33)

where

Σ = diag(σ1, σ2, . . . , σn) (34)

Γ = diag β1
0 1

−1 0

[ ]
, . . . , βm

0 1

−1 0

[ ]
, 0, . . . , 0

( )
: = diag(β1J2, . . . , βmJ2, 0, . . . , 0) (35)

and

Λ = diag(λ1, λ2, . . . , λn) (36)

Proof. As shown before, by using a real orthogonal transformation
x = Qp Eq. (7) becomes Eq. (8), which is (we repeat it for conve-
nience)

p̈ + QTSQ ṗ + QTGQ ṗ + QTKQp = QTf (t)

According to Theorem 2, the conditions in Eqs. (29)–(32) are
both necessary and sufficient for the existence of a real orthogonal
matrix Q such that QTSQ = Σ, QTGQ = Γ, and QTKQ = Λ, from
which we get Eq. (33) with Σ, Γ, and Λ, as in Eqs. (34)–(36). ▪

Remark 2. WhenG = 0, the conditions given in Eqs. (30)–(32) triv-
ially hold, leaving only the condition [K, S] = 0. Thus, the condi-
tions in Result 1 reduce to the single, well-known, necessary, and
sufficient condition for the complete decoupling (diagonalizing)
of damped potential systems (Caughey–O’Kelly [2]) in which the
damping matrix S is symmetric and commutes with the symmetric
matrix K.
On the other hand, when S = 0, the conditions in Result 1 reduce

to the two conditions given in Eq. (30) which are, as shown recently
in Ref. [8], necessary and sufficient for quasi-diagonalization of
conservative gyroscopic systems (see Corollary 1). ▪

COROLLARY 2. The system given in Eq. (7) with two
degrees-of-freedom can be transformed by an orthogonal congru-
ence transformation to the form Eq. (33) if and only if [K, S] = 0.

Proof. See Lemma 3. ▪

COROLLARY 3. Let, G = −GT , K = KT , S = aI + bK, and
Rank(G) = 2m ≤ n. Then the conditions [K, G2] = 0, and
[K, GKG] = 0, are necessary and sufficient for Eq. (7) to be trans-
formed by an orthogonal congruence transformation x = Qp to the
form

p̈ + (aI + bΛ) ṗ + Γ ṗ + Λp = QTf (t)

with Γ and Λ as in Eqs. (35) and (36). Note that the structure of the
matrix S here corresponds to the notion of Rayleigh damping [9].

Proof. The other necessary and sufficient conditions given in
Result 1 for an orthogonal matrix Q to exist so that S, G, and K
are simultaneously quasi-diagonalized are automatically satisfied
when the two conditions in the statement of this corollary are satis-
fied. For example,

[S, GSG] = [aI + bK, GSG] = a[I, GSG] + b[K, GSG]

= b[K, G(aI + bK)G]

= ab[K, G2] + b2[K, GKG] = 0 ▪

COROLLARY 4. Let S = ST , G = −GT ≠ 0, K = KT, and
Rank(G) = 2m ≤ n. If the matrices S, G, and K, commute pairwise,
i.e.,

[K, S] = 0, [S, G] = 0, [K, G] = 0 (37)

then there exists a real linear orthogonal change of coordinates that
transforms the dynamical system given in Eq. (7) to the form given
in Eq. (33) with

Σ = diag(σ1I2, . . . , σmI2, σ2m+1, . . . , σn) (38)

Γ = diag β1
0 1
−1 0

[ ]
, . . . βm

0 1
−1 0

[ ]
, 0, . . . 0

( )
(39)

and

Λ = diag(λ1I2, . . . , λmI2, λ2m+1, . . . , λn) (40)

Proof. If the matrices S, G, and K commute pairwise then the con-
ditions in Eqs. (29)–(32) are satisfied, and, according to Result 1,
there exists a real orthogonal transformation Q which transforms
Eq. (7) to the form given in Eq. (33). Moreover, the last two condi-
tions in Eq. (37) correspond to the conditions [Σ, Γ] = 0 and
[Λ, Γ] = 0 (see Lemma 2) which require σ1 = σ2, σ3 = σ4,
…,σ2m−1 = σ2m and λ1 = λ2, λ3 = λ4,…,λ2m−1 = λ2m, because
βj ≠ 0. We then get Eqs. (38) and (40). ▪

The following results are also consequences of Result 1. They
refer to commonly occurring situations in engineered structural
and mechanical systems as well as in naturally occurring systems,
and they contain fewer commutativity conditions.

Result 2. Let, S = ST , G = −GT , K = KT , and Rank(G) = 2m ≤ n.
If all non-zero eigenvalues of the skew-symmetric matrix G are dis-
tinct, then there exists a real linear orthogonal change of coordinates
that transforms the system given in Eq. (7) to the form given in Eqs.
(33)–(36) if and only if the matrices S,G2, and K commute pairwise,
i.e.,

[S, G2] = 0, [K, G2] = 0, and [K, S] = 0 (41)

Proof. Let Q be a real orthogonal matrix such that [5]

G = Q Ĝ 0
0 0n−2m

[ ]
QT (42)

and

K = Q K̂ �K
�KT ˆ̂K

[ ]
QT (43)
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and

S = Q Ŝ �S
�S
T ˆ̂S

[ ]
QT (44)

where

Ĝ = diag β1
0 1
−1 0

[ ]
, . . . , βm

0 1
−1 0

[ ]( )
: = diag(Ĝ jj)

m
j=1 (45)

and 0n−2m is (n− 2m)-dimensional zero matrix, K̂(Ŝ) and ˆ̂K( ˆ̂S) are
2m and (n− 2m) dimensional symmetric matrices respectively,
�K(�S) is 2m by (n− 2m) matrix, and Ĝ jj = βjJ2. From Eqs. (42)
and (45), we see that G2 = −Q diag(β21I2, . . . , β

2
mI2, 0, . . . , 0)Q

T

where I2 denotes the 2 by 2 identity matrix. Then, the conditions
[S, G2] = 0 and [K, G2] = 0 yield �S = 0 and �K = 0, because Ĝ2 is
nonsingular, and also

ŜĜ2 = Ĝ2Ŝ, K̂Ĝ2 = Ĝ2K̂ (46)

Noting that Ĝ2 = −diag(β21I2, . . . , β
2
mI2), and partitioning the

symmetric matrices K̂ and Ŝ as K̂ = [K̂ jk]mj,k=1 and Ŝ = [Ŝ jk]mj,k=1
with two-dimensional sub-matrices K̂ jk and Ŝ jk conditions (46)
become

[β2k Ŝ jk]
m
j,k=1 = [β2j Ŝ jk]

m
j,k=1, [β

2
k K̂ jk]

m
j,k=1 = [β2j K̂ jk]

m
j,k=1

or (β2j − β2k )Ŝ jk = 0 and (β2j − β2k )K̂ jk = 0 which yield Ŝ jk = 0 and
K̂ jk = 0 for j ≠ k since, by assumption, all the numbers
β1, . . . , βm, are distinct. Thus, the matrices K and S that satisfy
the first two conditions in Eq. (41) must be of the forms

K = Q
diag(K̂ jj)mj=1 0

0 ˆ̂K

[ ]
QT (47)

and

S = Q
diag(Ŝ jj)mj=1 0

0 ˆ̂S

[ ]
QT (48)

where K̂ jj(Ŝ jj), j = 1, . . . , m, are 2 by 2 symmetric matrices and
ˆ̂K( ˆ̂D) is an (n− 2m)-dimensional symmetric matrix.
The condition [K, S] = 0 requires [K̂ jj, Ŝ jj] = 0, j= 1, …, m, and

[ ˆ̂K, ˆ̂S] = 0. Observe that from Eqs. (42), (47), and (48)

GSG = Q diag(GjjŜ jjG jj)mj=1 0
0 0n−2m

[ ]
QT (49)

and

GKG = Q diag(GjjK̂ jjG jj)mj=1 0
0 0n−2m

[ ]
QT (50)

Since for each of the 2 by 2 matrices Kjj and S jj, we have
[K̂ jj, Ŝ jj] = 0, j= 1, …, m, from Remark 1 we know that for j= 1,
…, m

[Kjj, GjjK jjG jj] = [S jj, GjjS jjG jj] = [Kjj, GjjS jjG jj]

= [S jj, GjjK jjG jj] = 0

Noting the block-diagonal structure of the matrices in Eq. (42)
and in Eqs. (47)–(50), we therefore find that the four conditions

[K, GKG] = [S, GSG] = [K, GSG] = [S, GKG] = 0 (51)

are satisfied.
Then, Result 2 now follows from Result 1. ▪

Remark 3. Result 1 gives seven n&s conditions for the existence of
an orthogonal matrix Q that simultaneously quasi-diagonalizes the
matrices S, G, and K. Result 2 shows that an orthogonal matrix Q

exists such that S, G, and K can be quasi-diagonalized when the
non-zero eigenvalues of G are distinct with the number of necessary
and sufficient conditions reduces to just three from among the seven
n&s relations given in Result 1. Therefore, Result 2 shows that the
presence of distinct eigenvalues inG along with the three conditions
given in Eq. (41) cause the remaining n&s conditions stated
in Result 1, namely, [K, GKG] = 0, [S, GSG] = 0, [S, GKG] =
0, [K, GDG] = 0 to be automatically satisfied. ▪

Example 1. Consider the dynamical system

ẍ + (S + G)︸��︷︷��︸
D

ẋ + Kx = f (t)

with

K =
2 −1 1
−1 2 1
1 1 2

⎡
⎣

⎤
⎦, G =

0 1 −2
−1 0 −1
2 1 0

⎡
⎣

⎤
⎦, S = 8 −4 1

−4 11 4
1 4 8

⎡
⎣

⎤
⎦

Since G is 3 by 3, one of its eigenvalues must be zero, and the
other two must be imaginary complex conjugates of each other.
Thus, all the eigenvalues of G are distinct and its rank is 2.
We next calculate

G2 =
−5 −2 −1
−2 −2 2
−1 2 −5

⎡
⎣

⎤
⎦

and find that

KG2 = −9
1 0 1

0 0 0

1 0 1

⎡
⎢⎣

⎤
⎥⎦ = G2K, SG2 = −

33 6 21

6 6 −6
21 −6 33

⎡
⎢⎣

⎤
⎥⎦

= G2S, KS = 3

7 −5 2

−5 10 5

2 5 7

⎡
⎢⎣

⎤
⎥⎦ = SK

The conditions in Eq. (41) are therefore satisfied, and according
to Result 2, there exists a principal coordinate p in which this dyna-
mical system, decomposes into one two degrees-of-freedom subsys-
tem and one single-degree-of-freedom subsystem. Indeed, the
coordinate change x = Qp with

Q =
1/

��
2

√
1/

��
3

√
1/

��
6

√
0 1/

��
3

√
−2/

��
6

√
1/

��
2

√
−1/

��
3

√
−1/

��
6

√

⎡
⎣

⎤
⎦

uncouples the dynamical system to the form

p̈1
p̈2

[ ]
+

9 ṗ1
3 ṗ2

[ ]
+

��
6

√ 0 1

−1 0

[ ]
ṗ1
ṗ2

[ ]
+

3p1
0

[ ]

=
(f1(t) + f3(t))/

��
2

√

(f1(t) + f2(t) − f3(t))/
��
3

√
[ ]

p̈3 + 15 ṗ3 + 3p3 = (f1(t) − 2f2(t) − f3(t))/
��
6

√
▪

Result 3. Let S = ST , G = −GT , K = KT , and Rank(G) = 2m ≤ n.
If all eigenvalues of the potential matrix K are distinct, then there
exists a real linear orthogonal change of coordinates x = Qp that
transforms the system shown in Eq. (7) to the form given in Eqs.
(33)–(36) if and only if the following conditions hold:

[K, G2] = 0, [K, GKG] = 0, [K, S] = 0 (52)

Proof. The necessity is obvious (see Proof of Theorem 1). To prove
sufficiency, we assume that the conditions in Eq. (52) are satisfied.
Then, according to Corollary 1, there exists a real orthogonal matrix
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Q such that

QTGQ= Γ

= diag β1
0 1

−1 0

[ ]
, . . . , βm

0 1

−1 0

[ ]
, 0, . . . , 0

( )

and

QTKQ = Λ = diag(λ1, . . . , λn)

with all λj distinct. Furthermore, the condition [K, S] = 0 becomes
[Λ, QTSQ] = 0, and from this, it follows that QTSQ must be a diag-
onal matrix, since all the diagonal elements of Λ are distinct [5].
Hence, Q simultaneously diagonalizes S. ▪

Remark 4. Since K has distinct eigenvalues and it commutes with S,
the matrix S can always be expressed as a polynomial in the matrix
K [5]. Since we have shown that an orthogonal Q exists that simul-
taneously quasi-diagonalizes S, G, and K, when Eq. (52) is satisfied,
the seven necessary and sufficient conditions given in Result 1must
be satisfied. If the conditions in Eq. (52) are satisfied, then it can be
shown that the remaining four conditions given in Theorem 2 are
indeed satisfied. If, in addition, the matrix G has distinct non-zero
eigenvalues, then the first condition in Eq. (52) implies the
second [8], and the number of necessary and sufficient conditions
reduces to two, namely, [K, G2] = 0 and [K, S] = 0. ▪

Result 3 has special relevance to physical systems because they
often (typically) have stiffness (potential) matrices whose eigenval-
ues are distinct. In fact, symmetric matrices with distinct eigenval-
ues are dense in the set of stiffness matrices [5]. This means that for
almost all stiffness matrices (except perhaps for those whose struc-
ture may be restricted on physical grounds, e.g., by reasons of sym-
metry) infinitesimal changes in the values of the elements of a
stiffness matrix that has multiple eigenvalues will render its eigen-
values distinct [5]. The reason why stiffness matrices in most aero-
space, civil, and mechanical systems—those that are engineered as
well as those found in nature—can be taken to have distinct eigen-
values is that when modeling a physical system the elements of its
stiffness matrix are, at best, good approximations of those of the
actual physical system. These elements are generally found analyt-
ically (based on some assumptions on material properties, geome-
try, etc.) and/or experimentally. Hence, if the stiffness matrix in
the modeling of a physical system has multiple eigenvalues, an
infinitesimal change in the values of its (matrix) elements will
make its eigenvalues distinct. And, in general, such infinitesimal
changes will provide as good an approximation as before to the
actual stiffness matrix of the physical system.

Remark 5. Consider Eq. (2) (which we repeat here, for conve-
nience)

ẍ + Dẋ + Kx = f (t) (53)

When D is non-symmetric and non-defective, Ref. [4] provides a
necessary and sufficient condition for uncoupling the system using a
complex equivalence transformation. The condition is that
[K, D] = 0.
If K has eigenvalues that are all distinct (which is the typical case)

and the matrix D is non-symmetric (the symmetric case is handled
in Ref. [2]), then there is no complex equivalence transformation
that will simultaneously diagonalize these two matrices and uncou-
ple the system. This is because if K has distinct eigenvalues and it
commutes with D, then D can always be expressed as a polynomial
in K of degree at most (n − 1) [5], and since K is symmetric, Dmust
be too. ▪

Having seen [K, D] ≠ 0 when all the eigenvalues of K are dis-
tinct, we next consider the case when K has l distinct eigenvalues

with multiplicities greater than 1, and the remaining eigenvalues
are distinct with multiplicity one.

Remark 6. Suppose that in Eq. (53) the matrix K has lmultiple (dis-
tinct) eigenvalues λ1, λ2, . . . , λl, with multiplicities n1, n2, . . . , nl,
respectively, and all of the remaining eigenvalues are distinct.
Assume further that [K, D] = 0.
Since K is symmetric, there exists a real orthogonal matrixQwith

QTKQ = diag(λ1In1 , λ2In2 , . . . , λlInl , �Λn−r)

where r =
∑l

i=1 ni and �Λn−r is the (n − r)-dimensional diagonal
matrix with distinct eigenvalues. Since K and D commute, we have

QTDQ = diag(D̂n1 , D̂n2 , . . . , D̂nl ,
�̂Dn−r)

where D̂ni , i = 1, 2, . . . , l are ni by ni, non-symmetric matrices, and
�̂Dn−r is a real (n − r)-dimensional diagonal matrix. If D is non-
defective, then Ref. [4] guarantees (see Remark 5) that a complex
equivalence transformation exists that will simultaneously diagona-
lize K and D; a non-symmetric matrix D may or may not be
defective.
On the other hand, writing D̂ni = Ŝni + Ĝni , i = 1, 2, . . . , l, where

Ŝni and Ĝni are the symmetric and skew-symmetric parts of D̂ni and
applying Result 1, we see that there exists a real orthogonal matrix
that simultaneously quasi-diagonalizes both K and D if and only if

Ŝni Ĝ
2
ni
= Ĝ2

ni
Ŝni and (Ŝni Ĝni

)2 = (Ĝni
Ŝni )

2, i = 1, 2, . . . , l (54)

We do not require D to be non-defective.
When Eq. (54) is satisfied, upon using the coordinate transforma-

tion x = Qp the MDOF system uncouples to yield independent sub-
systems of which (n − 2m) are single-degree-of-freedom and m are
two degrees-of-freedom; here 2m is the rank of the skew-symmetric
part of D.
We note that [Ŝni , λiIni ] = λi[Ŝni , iIni ] = 0, i = 1, 2, . . . , l. There-

fore, when ni = 2, i = 1, 2, . . . , l, by Lemma 3 the above conditions
in Eq. (54) are automatically satisfied.
Thus, when [K, D] = 0 and the multiplicities of the eigenvalues

of K are at most two we are guaranteed to have an orthogonal trans-
formation Q such that the coordinate transformation x = Qp uncou-
ples the dynamical system in Eq. (53) into subsystems that have at
most two degrees-of-freedom.
In practical engineering applications, one finds that in MDOF

structural and mechanical systems the number of distinct repeated
eigenvalues l is generally less than 3 or 4, and often just 1. ▪

Example 2. We illustrate the result obtained in Remark 6 by a
simple example in which l = 1 and n1 = 2, i.e., there is only one
eigenvalue with multiplicity two, and all the other eigenvalues are
distinct.
Consider the four degrees-of-freedom system described by Eq.

(53) in which (for brevity, the numerical values are shown only
up to four decimal figures)

K =

1.7715 −0.8960 −0.6389 −1.0287
−0.8960 3.1842 1.8855 1.1947
−0.6389 1.8855 2.6726 0.8518
−1.0287 1.1947 0.8518 2.3716

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (55)

and

D =

0.0249 0.0069 −0.0146 −0.0035
−0.0211 0.0063 0.0290 −0.0016
0.0134 0.0290 0.0038 0.0118
0.0036 0.0194 −0.0092 0.0250

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (56)
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A small computation shows that [K, D] = 0. Following the steps
in Remark 6, we find that the matrix:

Q =

−0.5000 −0.6301 −0.4983 −0.3235
0.5000 −0.4901 −0.3020 0.6470

−0.5000 0.4901 −0.4681 0.5392
0.5000 −0.3501 0.6644 0.4313

⎡
⎢⎢⎣

⎤
⎥⎥⎦

diagonalizes K so that

QTKQ = diag(1, 1, 2, 6) = diag
1 0

0 1

[ ]
,

2 0

0 6

[ ]( )
:

= diag(I2, �Λ2)

showing that λ1 = 1 is a multiple eigenvalue of K with multiplicity
two, and λ2 = 2 and λ3 = 6 are the other two (distinct) eigenvalues.
As mentioned earlier, this corresponds to l = 1 in Remark 6, with
n1 = 2. We also have

QTDQ = diag
0 0.05
0 0

[ ]
,

0.02 0
0 0.04

[ ]( )
: = diag(D̂1,

�̂D2)

showing that 0 is a multiple eigenvalue of the matrix D with multi-
plicity two, the other two eigenvalues being 0.02 and 0.04.
Using the coordinate transformation x = Qp, Eq. (53) then

becomes

p̈ + D̂1 0
0 �̂D2

[ ]
︸�����︷︷�����︸

D̂

ṗ +
I2 0
0 �Λ2

[ ]
︸�����︷︷�����︸

K̂

p = QTf (t) (57)

which is, of course, equivalent to Eq. (53) for the K and D matrices
given in Eqs. (55) and (56). Equation (57) can be rewritten as

p̈1
p̈2

[ ]
+

0 0.05
0 0

[ ]
︸�����︷︷�����︸

D̂1

ṗ1
ṗ2

[ ]
+

1 0
0 1

[ ]
︸���︷︷���︸

K̂1

p1
p2

[ ]
= g1(t) (58)

and

p̈3
p̈4

[ ]
+

0.02 0
0 0.04

[ ]
ṗ3
ṗ4

[ ]
+

2 0
0 6

[ ]
p3
p4

[ ]
= g2(t) (59)

where QTf (t) = [gT1 (t), g
T
2 (t)]

T .
Equations (58) and (59) represent the decomposition of the

system given by Eqs. (53), (55), and (56) into two independent
uncoupled two degrees-of-freedom subsystems. Since the subsys-
tem in Eq. (59) is diagonal, it can alternatively be thought of as rep-
resenting two independent single-degree-of-freedom subsystems.
We further note that the matrix D̂1 in Eq. (58) can be split into its

symmetric and skew-symmetric parts as

D̂1 = Ŝ1 + Ĝ1 =
0 0.025

0.025 0

[ ]
+

0 0.025
−0.025 0

[ ]

Since Eq. (58) represents a two degrees-of-freedom system in
which Ŝ1 and the stiffness matrix K̂1 = I2 commute, the quasi-
diagonalization of this subsystem is guaranteed by Lemma 3
through the use of an orthogonal transformation, which is the case.
Consider the subsystem in Eq. (58) now. We note that [K, D] = 0

implies [D̂1, K̂1] = 0. We can then ask the following question: since
this commutation requirement (see Remark 5) is satisfied by this
subsystem, can we then apply the result in Ref. [4] to it and
ensure its diagonalization? The answer is, this subsystem cannot
be diagonalized since the matrix D̂1 is defective. The reason why
the guarantee in Ref. [4] fails is that the result there subsumes

that D̂1 is non-defective. Alternatively, we can consider the
system described by Eq. (57) in which the matrix K̂ is symmetric;
therefore, the equivalence transformation that diagonalizes K̂
reduces to an orthogonal transformation. Again, [D̂, K̂] = 0.
Recall that the matrix D̂ has an eigenvalue equal to 0 with (alge-
braic) multiplicity two, and we find that corresponding to this mul-
tiple eigenvalue it has only one eigenvector. Hence, D̂ is defective,
and the system described by Eqs. (53), (55), and (56) cannot be
diagonalized.
More generally, we see from Remark 6 that when the multiplic-

ities of the eigenvalues of K are at most two, then aiming for com-
plete diagonalization, which gives uncoupled independent
single-degree-of-freedom subsystems, appears to be perhaps too
restrictive in trying to uncouple an MDOF system when
[K, D] = 0; quasi-diagonalization relaxes this restriction and is
guaranteed to provide uncoupled independent subsystems with at
most two degrees-of-freedom because the necessary and sufficient
conditions for this are automatically satisfied (see Lemma 3). ▪

Result 4. Let S = ST , G = −GT , K = KT , and Rank(G) = 2m ≤ n.
If all the eigenvalues of the matrix S are distinct, then there exists
a real linear orthogonal change of coordinates such that the
system shown in Eq. (7) transforms to the form given in Eqs.
(33)–(36) if and only if the following conditions hold:

[S, G2] = 0, [S, GSG] = 0, [K, S] = 0 (60)

Proof. Interchange the n by n symmetric matrices K and S in
Result 3. ▪

Remark 7. By interchanging K and S in Remark 4 it follows that
when all the eigenvalues of S are distinct and all the non-zero eigen-
values of G are distinct, the necessary and sufficient conditions
reduce to [S, G2] = 0 and [K, S] = 0. ▪

Given the three matrices S, G, and K the likelihood of their simul-
taneous quasi-diagonalization by a real orthogonal matrix Q
increases as the number of independent commutation conditions
that the three matrices are required to satisfy reduces, since each
additional condition imposes additional constraints on the matrices.
Result 1 says that the number of the necessary and sufficient condi-
tions needed for simultaneous quasi-diagonalization of S, G, and K,
is seven. Our motivation in providing Results 2–4 has been to
reduce the number of these necessary and sufficient conditions for
simultaneous quasi-diagonalization from a total of seven to just
three by using information about the eigenvalues of the three matri-
ces that often arise in engineering applications. Thinking along
these lines, one is led to question whether one can further reduce
the number of commutation relations required for simultaneous
quasi-diagonalization by considering specific forms for the matri-
ces, instead of information about their eigenvalues. We consider
this topic next.

4 Simultaneous Quasi-Diagonalization Through the
Imposition of Structure on the Matrices S and K
Among the results obtained so far the one that requires only two

commutation conditions, is given in Corollary 1 and we take this as
the starting point in our exploration. However, the corollary guaran-
tees the simultaneous quasi-diagonalization of only the matrices K
and G by an orthogonal matrix Q. Using this corollary, one would
have two options in obtaining the simultaneous quasi-
diagonalization of all three matrices S, G, and K.
First, we could consider the matrices K and G. Application of

Corollary 1 to these two matrices says that a real orthogonal
matrix Q exists such that the K and G can be simultaneously quasi-
diagonalized if and only if [K, G2] = 0 and [K, GKG] = 0 (Eqs. (27)
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and (28)) are satisfied; for the symmetric matrix S to be also simul-
taneously diagonalized by this matrix Q, we would then require it to
have a specific structure (form).
Alternatively, one could consider the matrices S and G to which

one could apply Corollary 1, which says that a real orthogonal
matrix Q exists so that S and G can be simultaneously quasi-
diagonalize if and only if

[S, G2] = 0 or SG2 = G2S (61)

and

[S, GSG] = 0 or (SG)2 = (GS)2 (62)

For this matrix Q to then also simultaneously diagonalize K, the
symmetric matrix K would need to have a specific structure (form).
In obtaining suitable structures (forms) for the matrices K and S in
the two respective options, our aim, of course, is to posit structures
(forms) that would be general enough to encompass as wide a set of
symmetric matrices as possible. We begin our exploration with the
first option, and then take up the second.

4.1 Simultaneous Quasi-Diagonalization of Matrices K and
G.

We begin this subsection with the following three lemmas.

LEMMA 4.

(1) The matrices Ku, G2v, (GKG)w are symmetric for all integers
u, v, w ≥ 0. The spectra of the first two matrices are given by

(2) Λ[Ku] = {λu1, λ
u
2, . . . , λ

u
n}

(3) Λ[G2v] = ( − 1)v{β2v1 , β
2v
1 , . . . , β

2v
m , β

2v
m , 0, . . . , 0}

where λi, i = 1, 2, . . . , n are real numbers, and βi ≠ 0,
i = 1, 2, . . .m, are real numbers.

Proof. Since K is symmetric, Ku is symmetric. The matrix G2 is
also symmetric, since G is skew-symmetric. Similarly, the matrix
GKG is symmetric, as is (GKG)w. Hence, the result in (1) above.
Regarding the spectra, since K is symmetric its eigenvalues,

λi, i = 1, 2, . . . , n, are real. This proves (2) above. Furthermore, as
stated before, the non-zero eigenvalues of the n by n skew-
symmetric matrix G with rank 2m ≤ n are purely imaginary and
come in the complex conjugate pairs { ± iβj}

m
j=1; the remainder of

the (n − 2m) eigenvalues of G is zero. Hence, the spectrum of G2

is given by

Λ(G2) = −{β21, β
2
1, . . . , β

2
m, β

2
m, 0, . . . , 0}

from which the result in (3) above follows. ▪

LEMMA 5. If KG2 = G2K and (KG)2 = (GK)2, then for all j, k ≥ 0

(a) (GKG)jG2k = G2k(GKG)j (63)

(b) G2kKj = KjG2k (64)

(c) (GKG)kKj = Kj(GKG)k (65)

Proof. The proof is somewhat long and is given in the Appendix. ▪

LEMMA 6. If KG2 = G2K and (KG)2 = (GK)2, then

(1) the n by n matrix Buvw: = KuG2v(GKG)w is symmetric for all
integers u, v, w ≥ 0.

(2) KuG2v(GKG)w = Ku(GKG)wG2v = G2vKu(GKG)w

= G2v(GKG)wKu = (GKG)wG2vKu

= (GKG)wKuG2v

Thus, the order of multiplication of the three factors in Buvw does
not matter; the subscripts of B can be taken in any order.

Proof

(1) Taking the transposition of the matrix Buvw we get

[KuG2v(GKG)w]T = [(GKG)T ]w[(G2)
T
]v[KT ]u

= (GKG)wG2vKu = (GKG)wKuG2v

= Ku(GKG)wG2v = KuG2v(GKG)w. (66)

In the third equality above we have used Eq. (64) from Lemma 5;
in the fourth equality, Eq. (65); and in last, Eq. (63).i

(2) We prove the first four equalities; the rest can be proved in a
similar manner using Lemma 5.

KuG2v(GKG)w = Ku(GKG)wG2v follows from Eq. (63),
KuG2v(GKG)w = G2vKu(GKG)w follows from Eq. (64),
G2vKu(GKG)w = G2v(GKG)wKu follows from Eq. (65), etc. ▪

Consider now a special form of the symmetric part S of the
damping matrix D (see Eqs. (2) and (7)) given by

S =
∑n−1
w=0

∑h−1
v=0

∑n−1
u=0

auvwK
uG2v(GKG)w =

∑n−1
w=0

∑h−1
v=0

∑n−1
u=0

auvwBuvw (67)

where the integer h is the degree of the minimal polynomial of G2,
which equals the number of distinct eigenvalues of G2. The coeffi-
cients auvw in the summation are any real numbers; recall (Lemma 6)
that the subscript u refers to the index of K, v to the index of G2, and
w to the index of (GKG). Lemma 5 shows that when Eqs. (27) and
(28) are satisfied the matrix S in Eq. (67) is symmetric, since every
term following the last equality that is summed is symmetric.

Remark 8. The series form given in Eq. (67) for the symmetric part
of the damping matrix D is quite versatile since the (real) coeffi-
cients auvw are arbitrary. The form includes expressions for S like

S =
∑n−1
u=0

auK
u,

S = a0I +
∑n−1
u=1

∑h−1
v=1

auvK
uG2v and

S = a0I +
∑n−1
u=1

[auK
u + bu(GKG)

u] +
∑h−1
v=1

cvG
2v

(68)

as well as simpler sums made up of a few terms, as in expressions
like

S = b0I + b1K + b2K
2G4 + b3G

2(GKG)3 (69)

S = b0I + b1K + b2KG
2 + b3G

2(GKG) (70)

S = b1K
2 + b2G

2 + b3(GKG)
3 (71)

The subscripted lowercase letters in Eqs. (68)–(71) stand for arbi-
trary real numbers. ▪

Result 5. Consider the dynamical system described by Eq. (7),
namely

ẍ + (S + G)︸��︷︷��︸
D

ẋ + Kx = f (t), G ≠ 0 (72)

in which the symmetric matrix S is given in Eq. (67), the skew-
symmetric matrix G has rank 2m ≤ n, and K = KT . The matrices
K and G can be quasi-diagonalized if and only if

KG2 = G2K (73)
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and

(KG)2 = (GK)2 (74)

so that the dynamical system (Eq. (72)) can be uncoupled into inde-
pendent subsystems, each with at most two degrees-of-freedom.
The uncoupled equations in the principal coordinate p have the

form

p̈ + (Σ + Γ) ṗ + Λp = QTf (t) (75)

where

Σ =
∑n−1
w=0

∑h−1
v=0

∑n−1
u=0

auvwσuvw

σuvw = (−1)v+wdiag(λu1λ
w
2 β

2(v+w)
1 , λw1 λ

u
2β

2(v+w)
1 , . . .

. . . , λu2m−1λ
w
2mβ

2(v+w)
m , λw2m−1λ

u
2mβ

2(v+w)
m , 0 . . . , 0), v and/or w ≠ 0

= diag(λu1, λ
u
2, . . . , λ

u
n), v, w= 0 (76)

Γ = diag β1
0 1

−1 0

[ ]
, . . . , βm

0 1

−1 0

[ ]
, 0, . . . , 0

( )
: = diag(β1J2, . . . , βmJ2, 0, . . . , 0) (77)

and

Λ = diag(λ1, λ2, . . . , λn) (78)

Thus, the real orthogonal matrix Q simultaneously quasi-
diagonalizes D and K.

Proof. Using Corollary 1, we know that when Eqs. (73) and (74)
are satisfied, a real orthogonal matrix Q exists such that the matrices
G and K are simultaneously quasi-diagonalized, i.e., QTKQ = Λ,
and QTGQ = Γ(see Eqs. (23) and (24)). Using this orthogonal
matrix Q and the coordinate transformation x = Qp, Eq. (8)
becomes

p̈ + QTSQ ṗ + Γ ṗ + Λp = QTf (t) (79)

where

QTSQ =
∑n−1
w=0

∑h−1
v=0

∑n−1
u=0

auvwQ
TBuvwQ (80)

The general term in the summation above can be expressed as

QTBuvwQ = QTKuG2v(GKG)wQ

= [QTKuQ][QTG2vQ][QT (GKG)wQ]

= [Λ]u[Γ2]v[ΓΛΓ]w = σuvw

(81)

in which σuvw is the diagonal matrix given in Eq. (76). The last
equality follows since Λ, Γ2, and ΓΛΓ are diagonal matrices
given in Eqs. (23), (25), and (26). We therefore have

QTSQ =
∑n−1
w=0

∑h−1
v=0

∑n−1
u=0

auvwΛuΓ2v(ΓΛΓ)w (82)

which is a diagonal matrix. ▪

Result 6. When the rank(G) = 2m ≤ n and all the non-zero eigen-
values of G are distinct and the symmetric part of the damping
matrix has the form given in Eq. (67), then there exists a coordinate
change x = Qp withQTQ = I that uncouples Eq. (8) into m indepen-
dent two degrees-of-freedom subsystems, and (n − 2m)
single-degree-of-freedom subsystems if and only if

KG2 = G2K (83)

The uncoupling described in Eqs. (75)–(78) remains valid.

Proof. When the non-zero eigenvalues G are all distinct, only one
necessary and sufficient condition is needed for the simultaneous
quasi-diagonalization of K and G, since the first condition,
namely KG2 = G2K, implies the second, (KG)2 = (GK)2, as
shown in Ref. [8]. Simultaneous diagonalization of S (Eq. (67))
by Q follows as in Result 5. ▪

We note that when the non-zero eigenvalues of G are distinct the
number of necessary and sufficient conditions for quasi-
diagonalization of K and G reduce from two (Eqs. (73) and (74))
to just the condition given in Eq. (73) when S has the form given
in Eq. (67).

Example 3. To illustrate Result 6, consider the simple system given
by

ẍ + Dẋ + Kx = f (t) (84)

in which the stiffness matrix K = diag(k1, k1, k2), ki ≠ 0, i = 1, 2,
the damping matrix

D =
γk21 0 −c
0 γk21 0
c 0 γk22

⎡
⎣

⎤
⎦ (85)

with both γ and c real and non-zero numbers, and

f (t) = [f1(t), f2(t), f3(t)]T

Evidently, the matrix D is not symmetric, and it does not
commute with the stiffness matrix K whose eigenvalue k1 has mul-
tiplicity two. The symmetric and the skew-symmetric parts of
the matrix D, denoted by S and G, respectively, are then (see
Lemma 1)

S = γ diag(k21 , k
2
1 , k

2
2) (86)

G =
0 0 −c
0 0 0
c 0 0

⎡
⎣

⎤
⎦ (87)

Since the spectrum of G is given by Λ(G) = {ci, − ci, 0},
i =

����
−1

√
, the non-zero eigenvalues of G are distinct. Furthermore,

the symmetric part, S = γK2, (Eq. (86)) of the damping matrix, D,
has the form described in Eq. (67). Also, KG2 = G2K=
−diag(k1c2, 0, k2c2). Result 6 is then applicable, and we are guaran-
teed the existence of a real orthogonal matrix Q that will simulta-
neously quasi-diagonalize the matrices D and K (or S, G, and K ).
Since the rank of G is two we expect this three degrees-of-freedom
system to uncouple into a two degrees-of-freedom system and a
single-degree-of-freedom system.
The real orthogonal matrix that simultaneously quasi-

diagonalizes K and G is just the permutation matrix

Q =
1 0 0
0 0 1
0 1 0

⎡
⎣

⎤
⎦ (88)

because QTKQ = diag(k1, k2, k1) and QTGQ = −diag(cJ2, 0).
Using the coordinate transformation x = Qp in Eq. (84), and pre-

multiplying it by QT then leads to

p̈ +
γk21 −c 0
c γk22 0
0 0 γk21

⎡
⎣

⎤
⎦ ṗ +

k1 0 0
0 k2 0
0 0 k1

⎡
⎣

⎤
⎦p = f1(t)

f3(t)
f2(t)

⎡
⎣

⎤
⎦ (89)
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We see from Eq. (89) that the dynamical system shown in Eq.
(84) uncouples into the two independent subsystems

p̈1 +
γk21 −c
c γk22

[ ]
ṗ1 +

k1 0
0 k2

[ ]
p1 =

f1(t)
f3(t)

[ ]
(90)

and

p̈2 + γk21 ṗ2 + k1p2 = f2(t) (91)

The first subsystem (Eq. (90)) has 2DOF and the second is a
damped potential single-degree-of-freedom subsystem. ▪

Remark 9. As explained in Sec. 1, in standard structural analysis
the damping matrix D̂ is often taken to be symmetric and (as
equally often) taken to be of the form D̂ = αI + βK + γK2. One
could use this idea to further extend Example 3, so that the sym-
metric part S of the (arbitrary) damping matrix D is

S = αI + βK + γK2 (92)

where α, β, and γ are real constants and

D = αI3 + βK + γK2 + G (93)

The new matrix D in Eq. (93) (with G in Eq. (87)) is still in the
form given in Eq. (67) and one is again guaranteed by Result 6 that
the system with this new damping matrix D in Eq. (93) can again be
uncoupled to yield two independent subsystems one having two
degrees-of-freedom, the other having a single-degree-of-freedom.
Only the diagonal terms of the matrix that multiplies ṗ in Eq.

(89) are affected. Equation (89) now changes to

p̈ +

α + βk1 + γk21 −c 0

c α + βk2 + γk22 0

0 0 α + βk1 + γk21

⎡
⎢⎣

⎤
⎥⎦

ṗ +

k1 0 0

0 k2 0

0 0 k1

⎡
⎢⎣

⎤
⎥⎦p = f1(t)

f3(t)

f2(t)

⎡
⎢⎣

⎤
⎥⎦

▪
Example 4. We next consider a larger, six degrees-of-freedom
dynamical system described by

ẍ + Dẋ + Kx = f (t)

that has a stiffness matrix given by

K =

k1 + k2 −k2 0 0 0 0
−k2 k2 + k3 −k3 0 0 0
0 −k3 k3 + k4 −k4 0 0
0 0 −k4 k4 + k5 −k5 0
0 0 0 −k5 k5 + k6 −k6
0 0 0 0 −k6 k6

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

with k1 = k2 = 2000, k3 = k4 = 1700, and k5 = k6 = 1400. Such tri-
diagonal stiffness matrices arise commonly in the analysis of struc-
tural and mechanical systems. The damping matrix D is taken to be
(for brevity, we display the numerical values only up to four
decimal places)

D =

3.6531 −1.8289 1.1301 −1.2345 0.3368 0.5262
−1.6690 3.3981 −1.8707 1.0917 −0.8276 0.9671
−1.1127 −1.3012 3.1720 −1.2990 0.8609 −0.0469
0.9945 −0.9636 −1.6276 2.7167 −0.5553 0.0543

−0.0207 0.7277 −1.1839 −1.7736 2.6008 −0.8789
−0.6999 −0.9716 0.1629 −0.1794 −1.7427 1.3526

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

The spectrum of D is

Λ(D) = {0.4745 ± 0.9307i, 2.8129 ± 1.2481i, 5.1594 ± 1.8005i}

It has three pairs of complex eigenvalues. Since it has complex eigenvalues, there can be no real coordinate transformation that can uncou-
ple this dynamical system into independent single-degree-of-freedom systems. However, if the conditions stated in Result 6 are satisfied,
then we would be able to uncouple this system into independent subsystem, each with at most two degrees-of-freedom by using a real
coordinate transformation.

Splitting the matrix D into its symmetric part, S, and its skew-symmetric part, G, we get

S =

3.6531 −1.7489 0.0087 −0.1200 0.1581 −0.0869
−1.7489 3.3981 −1.5860 0.0640 −0.0499 −0.0023
0.0087 −1.5860 3.1720 −1.4633 −0.1615 0.0580

−0.1200 0.0640 −1.4633 2.7167 −1.1644 −0.0625
0.1581 −0.0499 −0.1615 −1.1644 2.6008 −1.3108

−0.0869 −0.0023 0.0580 −0.0625 −1.3108 1.3526

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

and

G =

0 −0.0800 1.1214 −1.1145 0.1788 0.6130
0.0800 0 −0.2848 1.0277 −0.7777 0.9694

−1.1214 0.2848 0 0.1643 1.0224 −0.1049
1.1145 −1.0277 −0.1643 0 0.6092 0.1168

−0.1788 0.7777 −1.0224 −0.6092 0 0.4319
−0.6130 −0.9694 0.1049 −0.1168 −0.4319 0

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦
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The spectrum of G is { ± i, ± 1.5i, ± 2i}, showing that its eigenvalues are distinct, and hence Result 6 could be used; by Result 6 we need
the condition given in Eq. (83) to be satisfied by the matrices K and G. A simple computation shows that this condition is satisfied. Fur-
thermore, we find that the symmetric part, S, of the damping matrix D can be expressed as (see Eq. (70))

S = (0.01)[I6 + 0.1K − (0.001)KG2 − (0.001)G2(GKG)]

which has the form given in Eq. (67) where only four terms of the series are present.
Result 6 is therefore applicable, and we are guaranteed that there

exists a real orthogonal matrix Q capable of decoupling the system
into independent subsystems, each having at most two
degrees-of-freedom. Since G has three non-zero complex conjugate

pairs of eigenvalues, we expect this six degrees-of-freedom system
to uncouple into 3 two degrees-of-freedom subsystems.
Indeed, using the coordinate transformation x = Qp, where the

real orthogonal matrix

Q =

0.1191 −0.3226 0.4748 −0.4387 −0.4676 −0.4951
0.2319 −0.5125 0.4490 −0.0747 0.2632 0.6380
0.3502 −0.4877 −0.1383 0.5144 0.3293 −0.4973
0.4467 −0.2268 −0.5541 −0.0037 −0.5976 0.2915
0.5301 0.2234 −0.2244 0.6231 0.4648 −0.1201
0.5734 0.5423 0.4433 0.3861 −0.1747 0.0325

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦ (94)

we obtain the relation in Eq. (75) (which we repeat here for convenience)

p̈ + (Σ + Γ) ṗ + Λp = QTf (t) (95)
in which

Σ = QTSQ = diag(0.1086, 0.8403, 1.9809, 3.6448, 4.2886, 6.0302)

Γ = QTGQ = diag(J2, 1.5J2, 2.0J2)

Λ = QTKQ = diag(105.8087, 823.1451, 2108.6889, 3659.2502, 5125.8813, 6577.2255)

and

QTf (t): = [gT1 (t), g
T
2 (t), g

T
3 (t)]

T

Inserting these matrices into Eq. (95) we see that this six
degrees-of-freedom system uncouples, as expected, into three dif-
ferent independent two degrees-of-freedom subsystems given by

p̈ +
0.1086 1
−1 0.8403

[ ]
ṗ +

105.8087 0
0 823.1451

[ ]
p = g1(t)

p̈ +
1.9809 1.5
−1.5 3.6448

[ ]
ṗ +

2108.6889 0
0 3659.2502

[ ]
p = g2(t)

and

p̈ +
4.2886 2
−2 6.0302

[ ]
ṗ +

5125.8813 0
0 6577.2255

[ ]
p = g3(t)

As stated in Result 2, the number of two degrees-of-freedom sub-
systems is m = 3 where rank(G) = 2m. ▪

When K has distinct eigenvalues then we have the following
result.

Result 7. Consider the damping matrix D = S + G where S is the
symmetric part of D, and G the skew-symmetric part. Let S have
the form given in Eq. (67). When all the eigenvalues of K (and/or
GKG) are distinct, the conditions given in Eqs. (73) and (74) are
necessary and sufficient for the existence of a real coordinate trans-
formation p = Qx(QTQ = I) so that K and G can be simultaneously
quasi-diagonalized and the dynamical system

ẍ + Dẋ + Kx = f (t)

is decomposed into independent uncoupled subsystems with at most
two degrees-of-freedom. Furthermore, every matrix D that permits
such a quasi-diagonalization of K andGmust have a symmetric part
S that can always be expressed in the form (see Eq. (68))

S = a0I +
∑n−1
u=1

(auK
u + bu(GKG)

u) +
∑h−1
v=1

cvG
2v (96)

where a0, au, bu, and cv are real numbers.

Proof. We note that by Result 5, Eqs. (73) and (74) are necessary
and sufficient for a real orthogonal matrix Q to exist such that in
the equation (see Eq. (8))

p̈ + QTSQ ṗ + QTGQ ṗ + QTKQp = QTf (t)

QTGQ = diag(β1J2, β2J2, . . . , βmJ2, 0, . . . 0),

and QTKQ = diag(λ1, λ2, . . . , λn)

Hence the dynamical system can be quasi-diagonalized. Refer-
ence [10] shows that when Q quasi-diagonalizes K and G and the
eigenvalues of K (and/or GKG) are distinct, any symmetric matrix
S that Q diagonalizes can always be expressed in the simpler
form given in Eq. (96) (see the last relation in Eq. (68), Remark 8).▪

COROLLARY 5. Consider the damping matrix D = S + G where S is
the symmetric part of D and G the skew-symmetric part. Let S have
the form given in Eq. (67). When

(1) all the eigenvalues of K are distinct,
(2) all the non-zero eigenvalues of G are also distinct,

and
(3) Equation (73) is satisfied,

the existence of a real coordinate transformation p = Qx(QTQ = I)
is guaranteed so that the equation

ẍ + Dẋ + Kx = f (t)

is decomposed into independent uncoupled subsystems with at most
two degrees-of-freedom. Furthermore, every matrix D that permits
such a quasi-diagonalization must have a symmetric part S that can
be expressed in the form given in Eq. (96).

Proof. Result 6 shows that when the non-zero eigenvalues of G are
all distinct, only Eq. (83) is necessary and sufficient to simulta-
neously quasi-diagonalize K and G. The result then follows upon
application of Result 7. ▪

Remark 10. When the eigenvalues of K are distinct, the orthonor-
mal eigenvectors of K are unique, and the eigenspace of each eigen-
value has dimension one. Hence, finding the columns of the matrix
Q that simultaneously quasi-diagonalizes K and G when Eqs. (73)
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and (74) are satisfied is much simpler, since they must be the eigen-
vectors of K. This is indeed how Q (Eq. (94)) was obtained in
Example 4. When, in addition, the non-zero eigenvalues of G are
distinct one only needs to check if Eq. (73) (also Eq. (83)) is satis-
fied to guarantee the existence of a real coordinate transformation
x = Qp that will simultaneously quasi-diagonalize K and G. ▪

Remark 11. The matrix Q in Result 6 can be easily obtained as
follows. Let Q̂ be an orthogonal matrix which diagonalizes the sym-
metric matrix G2, so that Q̂TG2Q̂ = −diag(β21I2, . . . , β

2
mI2, 0n−2m),

where I2 is the two-dimensional identity matrix and 0n−2m is the
(n − 2m)-dimensional zero matrix, βi are real and non-zero;
βi ≠ βj, for i ≠ j. Since G2 commutes with K and since βi ≠ βj for
i ≠ j, we must have Q̂TKQ̂ = diag(K1, . . . , Km, Kn−2m) where Ki(i =
1, 2, . . .m) are each two by two real symmetric matrices, and Kn−2m
is an (n − 2m) by (n − 2m) real symmetric matrix. Furthermore,
since G2 also commutes with G, we must have
Q̂TGQ̂ = diag(G1, . . . , Gm, 0n−2m), where Gi(i = 1, 2, . . .m) are
each two by two skew-symmetric matrices. It follows that the
orthogonal matrix Q that simultaneously quasi-diagonalizes K and
G has the form Q = Q̂diag(�Q1, . . . , �Qm, �Qn−2m), where
�Qi(i = 1, . . . , m) is an orthogonal two by two matrix that diagonal-
izes Ki, and �Qn−2m is an (n − 2m) by (n − 2m) orthogonal matrix
that diagonalizes Kn−2m. ▪

Remark 12. When both K and G have multiple eigenvalues the
determination of a real orthogonal transformation Q gets more
involved. As explained earlier, systems with such multiple eigen-
values are rare in real-life applications, and a general procedure for
determining Q is described in detail in the Appendix of Ref. [8]. ▪

4.2 Simultaneous Quasi-Diagonalization of Matrices S and
G.

As discussed before, the uncoupling of a damped potential system
can also be accomplished, through the simultaneous quasi-
diagonalization of the symmetric matrix S and the skew-symmetric
matrixGwhich form the components of the damping matrixD if the
proper conditions are satisfied. In this section, we explore this
avenue and give the conditions.
We note that Corollary 1 applies to two matrices, one symmetric,

and the other skew-symmetric. Instead of taking these two matrices
to be K and G (as we did in Result 5), we now take the two matrices
to be S andG, and applyCorollary 1. This simply involves the inter-
change of the symbols K and S. Interchanging them in Eq. (67), we
consider the matrix K to have the form

K =
∑n−1
w=0

∑h−1
v=0

∑n−1
u=0

cuvwS
uG2v(GSG)w =

∑n−1
w=0

∑h−1
v=0

∑n−1
u=0

cuvwCuvw (97)

where cuvw are arbitrary real numbers. Provided SG2 = G2S and
(SG)2 = (GS)2, Lemmas 2–5 are valid when K is replaced by the
symmetric matrix S in them; symmetry of each term in the summa-
tion in Eq. (97) therefore follows. We then obtain a result analogous
to Result 5.

Remark 13. Just like S in Eq. (67), the form of K in Eq. (97) is quite
versatile. Expressions for K analogous to those for S (see Remark 8)
can be obtained by interchanging K and S in Eqs. (68)–(71) in
Remark 8. ▪

Result 8. Consider the dynamical system described by Eq. (7),
namely

ẍ + (S + G)︸��︷︷��︸
D

ẋ + Kx = f (t) (98)

in which the symmetric matrix K has the form given in Eq. (97), the
skew-symmetric matrix G ≠ 0 has rank 2m ≤ n, and S = ST . The

matrices S and G can be simultaneously quasi-diagonalized by a
real orthogonal matrix Q if and only if

SG2 = G2S (99)

and

(SG)2 = (GS)2 (100)

so that the dynamical system(Eq. (98)) can be uncoupled into inde-
pendent subsystems, each with at most two degrees-of-freedom.
The uncoupled equations in the principal coordinate p defined by

the real transformation x = Qp have the form

p̈ + (Σ + Γ) ṗ + Λp = QTf (t) (101)

where

Σ = diag(σ1, σ1, . . . , σn) (102)

Γ = diag β1
0 1

−1 0

[ ]
, . . . , βm

0 1

−1 0

[ ]
, 0, . . . , 0

( )
: = diag(β1J2, . . . , βmJ2, 0, . . . 0)

(103)

Λ =
∑n−1
w=0

∑h−1
v=0

∑n−1
u=0

cuvwζuvw (104)

and

ζuvw = (−1)v+wdiag(σu1σ
w
2 β

2(v+w)
1 , σw1 σ

u
2β

2(v+w)
1 , . . .

. . . , σu2m−1σ
w
2mβ

2(v+w)
m , σw2m−1σ

u
2mβ

2(v+w)
m , 0 . . . , 0), v and/or w ≠ 0

= diag(σu1, σ
u
2, . . . , σ

u
n), v, w= 0. (105)

Thus, the real orthogonal matrix Q simultaneously quasi-
diagonalizes D and K.

Proof. Using Corollary 1, we observe that if and only if Eqs. (99)
and (100) are satisfied, a real orthogonal matrix Q exists such that
the matrices G and S can be simultaneously quasi-diagonalized,
i.e., QTSQ = Σ, and QTGQ = Γ. Using this orthogonal matrix Q
and the coordinate transformation x = Qp, Eq. (8) becomes

p̈ + Σ ṗ + Γ ṗ + QTKQp = QTf (t)

where

QTKQ =
∑n−1
u=0

∑h−1
v=0

∑n−1
w=0

cuvwQ
TCuvwQ

The general term in the summation above can be expressed as

QTCuvwQ = QTSuG2v(GSG)wQ

= [QTSuQ][QTG2vQ][QT (GSG)wQ]

= [Σ]u[Γ2]v[ΓΣΓ]w = ξuvw

in which ξuvw is the diagonal matrix given in Eq. (105), and

QTKQ =
∑n−1
u=0

∑h−1
v=0

∑n−1
w=0

cuvwΣuΓ2v(ΓΣΓ)w

which is a diagonal matrix. ▪

As discussed before, and illustrated in the proof above, new
results analogous to all the results obtained in Sec. 4.1 can be
obtained by simply interchanging the symbols K and S and noting
the changes in the expressions for Σ and Λ in Eqs. (102) and
(104). For example, the analog of Corollary 5 is as follows.
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COROLLARY 6. Consider the damping matrix D = S + G where S is
the symmetric part of D and G the skew-symmetric part. Let K have
the form given in Eq. (97). When

(1) all the eigenvalues of S are distinct,
(2) all the non-zero eigenvalues of G are also distinct,

and
(3) Equation (99) is satisfied,

the existence of a real coordinate transformation p = Qx(QTQ = I)
is guaranteed so that the equation

ẍ + (S + G)︸��︷︷��︸
D

ẋ + Kx = f (t)

is decomposed into independent uncoupled subsystems with at most
two degrees-of-freedom. Furthermore, every matrix K that permits
such a quasi-diagonalization must be expressed in the form given in

K = a0I +
∑n−1
u=1

(auS
u + bu(GSG)

u) +
∑h−1
v=1

cvG
2v (106)

where a0, au, bu, and cv are real numbers. ▪

Example 5. We illustrate the application of Corollary 6 to a
damped MDOF gyroscopic potential dynamical system (in which
G is the gyroscopic matrix, K is the potential (stiffness) matrix,
and S is the symmetric damping matrix) described by the equation

ẍ + Sẋ + Gẋ + Kx = f (t)

where

S =

0.0424 0.0433 0.0159 0.0083 0.0327
0.0433 0.0732 0.0111 0.0073 0.0200
0.0159 0.0111 0.0511 0.0276 0.0308
0.0083 0.0073 0.0276 0.0827 0.0128
0.0327 0.0200 0.0308 0.0128 0.0405

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

G =

0 −0.1075 −0.4986 −0.0168 0.4495
0.1075 0 0.1310 −0.1967 −0.3526
0.4986 −0.1310 0 −0.0332 −0.1874
0.0168 0.1967 0.0332 0 0.1537

−0.4495 0.3526 0.1874 −0.1537 0

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

and

K =

252.4193 −88.5826 −26.8433 19.8665 −48.0309
−88.5826 132.4679 68.6458 −20.3464 13.2369
−26.8433 68.6458 176.5082 −9.3011 −117.2071
19.8665 −20.3464 −9.3011 73.1958 40.4367

−48.0309 13.2369 −117.2071 40.4367 212.7946

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

The spectrum of G is {±0.25i, ±0.8i, 0}, and we see that the
dynamical system cannot be diagonalized by any real transforma-
tion. The non-zero eigenvalues of G are seen to be distinct. The
eigenvalues of S are also distinct and Eq. (99) is satisfied by the
matrices S and G. Furthermore, the matrix K can be expressed as

K = 500[S − G2 − (GSG)2] (107)

which is in the form given in Eq. (106).
Hence, by Corollary 6, an orthogonal matrix Q exists that simul-

taneously quasi-diagonalizes these two matrices. Indeed, it is given
by

Q =

−0.4629 −0.3040 −0.7004 −0.4495 0.0251
−0.5204 −0.5069 0.2847 0.4086 −0.4735
−0.4096 0.2778 −0.2328 0.6275 0.5542
−0.4083 0.7561 0.0290 −0.1630 −0.4840
−0.4248 −0.0423 0.6110 −0.4589 0.4835

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

and it leads to

QTDQ =

0.1426 0.2500 0 0 0
−0.2500 0.0839 0 0 0
0 0 0.0013 0.8000 0
0 0 −0.8000 0.0172 0
0 0 0 0 0.0450

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

(108)

The matrix Q simultaneously diagonalizes K, and we have

QTKQ = diag(102.5364, 73.1681, 320.5885, 328.5816, 22.5112)

(109)

Using the coordinate transformation x = Qp, in Eq. (98) and mul-
tiplying it by QT from the left, upon noting Eqs. (108) and (109) we
then get the relation

p̈ +

0.1426 0.2500 0 0 0

−0.2500 0.0839 0 0 0

0 0 0.0013 0.8000 0

0 0 −0.8000 0.0172 0

0 0 0 0 0.0450

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

︸��������������������������������︷︷��������������������������������︸
Σ+Γ

ṗ +

102.5364 0 0 0 0

0 73.1681 0 0 0

0 0 320.5885 0 0

0 0 0 328.5816 0

0 0 0 0 22.5112

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦p = QTf (t)

This gives the following three uncoupled subsystems:

p̈1 +
0.1426 0.2500
−0.2500 0.0839

[ ]
ṗ1 +

102.5364 0
0 73.1681

[ ]
p1 = g1(t)

p̈2 +
0.0013 0.8000
−0.8000 0.0172

[ ]
ṗ2 +

320.5885 0
0 328.5816

[ ]
p2 = g2(t)

and

p̈3 + 0.045 ṗ3 + 22.5112p3 = g3(t)

where QTf (t) = [gT1 (t), g
T
2 (t), g3(t)]

T .

As seen, two of the subsystems have two degrees-of-freedom and
one is a single-degree-of-freedom system. The corollary further
guarantees that K given in Eq. (107) can be expressed in the form
given in Eq. (106), which, in this case, it already is. ▪

5 Conclusions
This paper deals with the uncoupling of damped linear MDOF

potential systems with arbitrary damping matrices into smaller-
dimensional subsystems with at most two degrees-of-freedom
through the use of a simple real linear coordinate transformation
that uses an orthogonalmatrix. It is well-known that two symmetric
matrices can be simultaneously diagonalized by a real orthogonal
transformation if and only if they commute. This important result
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in linear algebra provides a simple linear coordinate transformation
that uses an orthogonal matrix and that permits the decomposition
of a linear MDOF damped potential system—with a positive defi-
nite mass matrix, and symmetric stiffness and damping matrices
that commute—into a set of independent, uncoupled single-
degree-of-freedom subsystems. The damped system has normal
modes of vibration, and this permits its behavior to be easily under-
stood and robustly computed [2].
Since the publication of this important result about 60 years ago,

models of engineered and naturally occurring systems employed in
academic research and engineering practice often restrict the
dampingmatrices in linearMDOF potential systems to be symmetric
and to commute with the symmetric potential (stiffness) matrix.
These restrictions (assumptions) on the damping matrix are placed
not least because they enable the uncoupling of such systems
through the use of an orthogonal coordinate transformation into
single-degree-of-freedom independent subsystems, whose vibratory
behavior is well understood. However, in complex vibratory struc-
tural and mechanical systems the sources of damping are often diffi-
cult to assess/identify. Also, experimental measurements of damping
(and its linearized approximations) used in the modeling of linear
MDOF systems often show that the damping matrix may not
commute with the stiffness matrix and/or may not be symmetric.
To the best of the authors’ knowledge, a continuation of the fruit-

ful line of exploration introduced in Ref. [2] that uses an orthogonal
matrix transformation of the coordinates has not been undertaken
when the two restrictions stated above on the damping matrix are
disposed of. Besides catering to robust computational procedures,
orthogonal transformations are simple to understand since they
physically represent rotations and reflections. This paper addresses
linear MDOF potential systems in which the damping matrices can
be arbitrary; it simultaneously handles MDOF gyroscopic potential
systems with symmetric damping matrices, which are their duals.
We seek linear coordinate transformations that use orthogonal
matrices to maximally uncouple such MDOF systems. The uncou-
pling leads to improved physical insights into their dynamical beha-
vior, and the orthogonal matrices employed in the coordinate
transformations provide robust methods for the computation of
their responses to external excitations.
The main results can be summarized as follows:

(1) A new central result in linear algebra that gives the n&s con-
ditions for two n by n symmetric matrices and one skew-
symmetric matrix to be simultaneously quasi-diagonalized
by a real orthogonal congruence is proved in Sec. 2. A
total of ten n&s conditions are found, which are then
reduced to seven n&s conditions. Reducing the number of
n&s conditions while keeping the set of matrices as wide
as possible, so that the results are of practical value and
can be applied to engineered systems as well as those
found in nature, is one of the underlying threads in the paper.

(2) The existing literature to date places damped MDOF poten-
tial systems in a different dynamical category from damped
gyroscopic systems. This is understandably so, because
from a physical standpoint, the principal forces that engen-
der their dynamical behavior—potential forces and gyro-
scopic forces—are widely different in their origin and
character [6].

The paper shows, however, that from a mathematical standpoint,
a given linear MDOF potential system with stiffness matrix K and
an arbitrary damping matrix D = S + G, where S is symmetric and
G ≠ 0 is skew-symmetric, is identical in its dynamical behavior
to an MDOF gyroscopic potential system with the stiffness matrix
K, gyroscopic matrix G, and symmetric damping matrix S.
Because these two physically dissimilar systems share a common
equation of motion, we consider them as being duals (or reflections)
of each other, and the two disparate categories to which they belong
are thus brought together under a unified conceptual framework.
For simplicity and brevity, all the results in this paper (as also in

the discussion below) are introduced mainly using the notion of a

damped MDOF potential system with an arbitrary damping
matrix. The dynamical behavior of its dual to any external excita-
tion being identical, all the results herein are also therefore
equally applicable to damped MDOF gyroscopic potential
systems with symmetric damping matrices.

(3) Taking the symmetric matrices to be the matrices S and K and
the skew-symmetric matrix to be G, in Sec. 3, the central
results described in item (1) above are used to give the
n&s conditions for a damped MDOF potential system
(with an arbitrary damping matrix D ≠ 0) so that it is uncou-
pled by a real linear coordinate transformation using an
orthogonal matrix. The uncoupling is maximal in the sense
that it leads to a decomposition of the MDOF system into
at most two degrees-of-freedom, independent subsystems.
As mentioned before, such an uncoupling lends itself to con-
siderably greater physical insights into the vibratory behavior
of such MDOF potential systems and, in addition, results in
robust computational schemes for quantitatively determining
their response to external forces.

(4) Noting that the ten n&s conditions—though winnowed down
to seven commutation conditions—still constitute significant
restrictions on the matrices that describe a linear MDOF
potential system with an arbitrary damping matrix, they are
further reduced to three. Several results are obtained that
show that these three n&s conditions can be used when mod-
eling physical systems that commonly arise in civil, aero-
space, and mechanical engineering.

(5) To reduce the number of n&s conditions more generally,
from seven down to just two, we posit (consider) a general
form for one of the two symmetric matrices (see item (3)
above), say, the symmetric part S of the damping matrix
(or the stiffness matrix K). This general form that is
posited is chosen to be versatile in the sense that it encom-
passes a wide variety of symmetric matrices. The form auto-
matically satisfies the remaining five n&s conditions, leaving
only two n&s conditions to be imposed on a damped MDOF
potential system to guarantee its maximal uncoupling. When
the matrix S has the posited form, several results related to
the maximal uncoupling of such systems are presented,
along with numerical illustrative examples.

Further, when the gyroscopic part of the damping matrix in our
damped MDOF potential system has distinct non-zero eigenvalues,
it is shown that only a single n&s condition is required to maximally
uncouple the system whose S matrix has the posited form. Such
systems are often encountered in engineering practice and in
nature. In addition, if the stiffness matrix has distinct eigenvalues
then it is shown that the symmetric part of the damping matrix
must be expressible in a simple form, which is explicitly obtained
herein, and which is a subset of the general form posited.
As mentioned earlier, we can alternatively obtain the results for

the dual MDOF gyroscopic potential system that has a symmetric
damping matrix S. For example, when the stiffness matrix K is in
the general posited form provided (Eq. (97)), two n&s conditions
(that we provide explicitly) are required to be satisfied for uncoupl-
ing the MDOF system into at most two degrees-of-freedom, inde-
pendent subsystems. If, in addition, the non-zero eigenvalues of
G are distinct, only one n&s condition guarantees such an uncoupl-
ing. Furthermore, when S has distinct eigenvalues, the stiffness
matrix K must be expressible in a simple form (Eq. (106)), which
is a subset of the general posited form.
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Appendix
LEMMA 5. When

KG2 = G2K (A1)

and

(KG)2 = (GK)2 (A2)

then
Kj, G2k , (GKG)r , integer j, k, r ≥ 0, commute pairwise.
In other words, for j, k ≥ 0

(a) G2k(GKG)j = (GKG)jG2k (A3)

(b) KjG2k = G2kKj (A4)

(c) Kj(GKG)k = (GKG)kKj (A5)

(d) G(GKG)j = G2jKjG = KjG2jG (A6)

Proof.

(a) Equation (A3) is obviously true for k = 0 and/or j = 0. We
first show that

G2k(GKG) = (GKG)G2k, k ≥ 1 (A7)

We begin by showing that this is true for k = 1, because

G2(GKG) = G(G2K)G = G(KG2)G = (GKG)G2 (A8)

in which the second equality follows from Eq. (A1). We prove the
relation in Eq. (A7) by induction. We assume that Eq. (A7) is true
for some k = (l − 1) > 0, so that

G2l−2(GKG) = (GKG)G2l−2 (A9)

Then,

G2l(GKG) = G2G2l−2(GKG) = G2(GKG)G2l−2

= (GKG)G2G2l−2 = (GKG)G2l (A10)

where we have used Eq. (A9) in the second equality and Eq. (A8) in
the third. This completes our inductive proof of Eq. (A7).
We next show that Eq. (A3) is true. From Eq. (A7), we see that

Eq. (A3) is true for j = 1. Assume that it is true for j = l − 1 > 0, i.e.,

G2k(GKG)l−1 = (GKG)l−1G2k (A11)

Then,

G2k(GKG)l = G2k(GKG)l−1(GKG) = (GKG)l−1G2k(GKG)

= (GKG)l−1(GKG)G2k = (GKG)lG2k
(A12)

where we have used Eq. (A11) in the second equality and Eq. (A7)
in the third equality.

(b) Equation (A4) is obviously true for k = 0 and/or j = 0. We
begin by showing that KjG2 = G2Kj, j > 1. We note that when
j = 1, this relation calls for the commutation of the matrices K
and G2, which is true because of Eq. (A1). We now assume
that this relation is true for some integer j = (l − 1) > 0, so that

Kl−1G2 = G2Kl−1 (A13)
Then,

KlG2 = K(Kl−1G2) = K(G2Kl−1) = G2KKl−1 = G2Kl

thereby completing the induction argument, which shows that

KjG2 = G2Kj, j > 1 (A14)

We now fix a certain arbitrary value of j = j ∗ >1 and consider the
relation

K j∗G2k = G2kK j∗, k > 1 (A15)

which, by Eq. (A14), is true for k = 1. We assume next that Eq.
(A15) is true for some integer k = (l − 1) > 0, so that
K j∗G2l−2 = G2l−2K j∗, k > 1. Now we find that

K j∗G2l = K j∗G2l−2G2 = G2l−2K j∗G2 = G2l−2G2K j∗ = G2lK j∗

(A16)

where we have used the equality in Eq. (A14), which is valid for
j = j∗. Since j∗ > 1 is arbitrary, this completes the proof by induction
of Eq. (A4).

(c) Equation (A5) is obviously true for k = 0 and/or j = 0. We
begin by showing that

Kj(GKG) = (GKG)Kj (A17)

When j = 1, Eq. (A17) calls for the commutation of K and GKG,
which is true because of Eq. (A2). We now assume that Eq. (A17) is
true for some integer j = (l − 1) > 0 so that

Kl−1(GKG) = (GKG)Kl−1 (A18)

Then,

Kl(GKG) = KKl−1(GKG) = K(GKG)Kl−1

= (GKGK)Kl−1 = (GKG)Kl (A19)

which shows that the Eq. (A17) in true. We now continue to show
that Eq. (A5) is true. From Eq. (A17), we see that it is true for k = 1.
We assume that it is true for k = (l − 1) > 0, i.e.,

Kj(GKG)l−1 = (GKG)l−1Kj (A20)

Then,

Kj(GKG)l = Kj(GKG)l−1(GKG) = (GKG)l−1Kj(GKG)

= (GKG)l−1(GKG)Kj = (GKG)lKj (A21)

where we have used Eq. (A20) in the second equality and Eq. (A17)
in the third.

(d) Equation (A6) is satisfied for j = 1 since G(GKG) = G2KG.
We assume that it is satisfied for j = l − 1 > 0, and show that it
then is satisfied for j = l. Using Eq. (A4), we get

G(GKG)l = G(GKG)l−1(GKG) = G2(l−1)Kl−1G(GKG)

= G2(l−1)Kl−1G2KG = G2lKlG

The last equality in Eq. (A6) follows from Eq. (A4). ▪
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